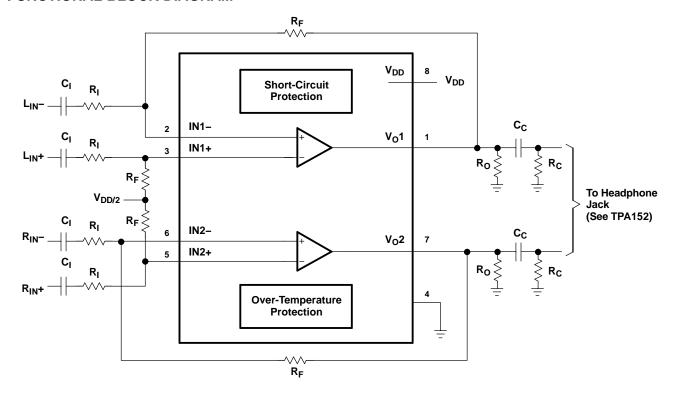


150-mW STEREO AUDIO POWER AMPLIFIER

FEATURES

- 150-mW Stereo Output
- · Wide Range of Supply Voltages
 - Fully Specified for 3.3-V and 5-V Operation
 - Operational From 2.5 V to 5.5 V
- Thermal and Short-Circuit Protection
- Surface-Mount Packaging
 - PowerPAD™ MSOP
 - SOIC
- Standard Operational Amplifier Pinout



DESCRIPTION

The TPA112 is a stereo audio power amplifier packaged in an 8-pin PowerPADTM MSOP package capable of delivering 150 mW of continuous RMS power per channel into 8- Ω loads. Amplifier gain is externally configured by means of two resistors per input channel and does not require external compensation for settings of 1 to 10.

THD+N when driving an 8- Ω load from 5 V is 0.1% at 1 kHz, and less than 2% across the audio band of 20 Hz to 20 kHz. For 32- Ω loads, the THD+N is reduced to less than 0.06% at 1 kHz, and is less than 1% across the audio band of 20 Hz to 20 kHz. For 10-k Ω loads, the THD+N performance is 0.01% at 1 kHz, and less than 0.02% across the audio band of 20 Hz to 20 kHz.

FUNCTIONAL BLOCK DIAGRAM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

AVAILABLE OPTIONS

	PACKAGED D	EVICES	MSOP
T _A	SMALL OUTLINE ⁽¹⁾ (D)	MSOP ⁽¹⁾ (DGN)	SYMBOLIZATION
-40°C to 85°C	TPA112D	TPA112DGN	TI AAD

 The D and DGN packages are available in left-ended tape and reel only (e.g., TPA112DR, TPA112DGNR).

Terminal Functions

TERM	TERMINAL		DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
GND	4	ı	GND is the ground connection.	
IN1-	2	ı	IN1- is the inverting input for channel 1.	
IN1+	3	I	IN1+ is the noninverting input for channel 1.	
IN2-	6	ı	IN2- is the inverting input for channel 2.	
IN2+	5	I	IN2+ is the noninverting input for channel 2.	
V _{DD}	8	ı	V _{DD} is the supply voltage terminal.	
V _O 1	1	0	1 is the audio output for channel 1.	
V _O 2	7	0	V _O 2 is the audio output for channel 2.	

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

		UNIT
V_{DD}	Supply voltage	6 V
V _I	Differential input voltage	-0.3 V to V _{DD} + 0.3 V
I _I	Input current	±2.5 μA
Io	Output current	±250 mA
	Continuous total power dissipation	Internally Ilimited
TJ	Operating junction temperature range	–40°C to 150°C
T _{stg}	Storage temperature range	−65°C to 150°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

	PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
	D	725 mW	5.8 mW/°C	464 mW	377 mW
L	DGN	2.14 W ⁽¹⁾	17.1 mW/°C	1.37 W	1.11 W

(1) See the Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report (SLMA002), for more information on the PowerPAD package. The thermal data was measured on a PCB layout based on the information in the section entitled Texas Instruments Recommended Board for PowerPAD, of that document.

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
V_{DD}	Supply voltage	2.5	5.5	V
T _A	Operating free-air temperature	-40	85	°C

DC ELECTRICAL CHARACTERISTICS

at $T_A = 25^{\circ}C$, $V_{DD} = 3.3 \text{ V}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Voo	Output offset voltage				10	mV
PSRR	Power supply rejection ratio	V _{DD} = 3.2 V to 3.4 V		83		dB
I _{DD(q)}	Supply current			1.5	3	mA
Z _I	Input impedance			> 1		ΜΩ

AC OPERATING CHARACTERISTICS

 V_{DD} = 3.3 V, T_A = 25°C, R_L = 8 Ω

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Po	Output power (each channel)	THD ≤ 0.1%	70 ⁽¹⁾	mW
THD+N	Total harmonic distortion + noise	P _O = 70 mW, 20 Hz–20 kHz	2%	
B _{OM}	Maximum output power BW	G = 10, THD < 5%	> 20	kHz
	Phase margin	Open loop	58°	
S _{VRR}	Supply ripple rejection	f = 1 kHz	68	dB
	Channel/channel output separation	f = 1 kHz	86	dB
SNR	Signal-to-noise ratio	P _O = 100 mW	100	dB
V _n	Noise output voltage		9.5	μV(rms)

⁽¹⁾ Measured at 1 kHz

DC ELECTRICAL CHARACTERISTICS

at $T_A = 25^{\circ}C$, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Voo	Output offset voltage				10	mV
PSRR	Power supply rejection ratio	V _{DD} = 4.9 V to 5.1 V		76		dB
$I_{DD(q)}$	Supply current			1.5	3	mA
Z _I	Input impedance			> 1		МΩ

AC OPERATING CHARACTERISTICS

 $V_{DD} = 5 \text{ V}, T_A = 25^{\circ}\text{C}, R_L = 8 \Omega$

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Po	Output power (each channel)	THD ≤ 0.1%	70 ⁽¹⁾	mW
THD+N	Total harmonic distortion + noise	$P_{O} = 150 \text{ mW}, 20 \text{ Hz}-20 \text{ kHz}$	2%	
B _{OM}	Maximum output power BW	G = 10, THD < 5%	> 20	kHz
	Phase margin	Open loop	56°	
S _{VRR}	Supply ripple rejection	f = 1 kHz	68	dB
	Channel/channel output separation	f = 1 kHz	86	dB
SNR	Signal-to-noise ratio	P _O = 150 mW	100	dB
V _n	Noise output voltage		9.5	μV(rms)

⁽¹⁾ Measured at 1 kHz

AC OPERATING CHARACTERISTICS

 V_{DD} = 3.3 V, T_A = 25°C, R_L = 32 Ω

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Po	Output power (each channel)	THD ≤ 0.1%	40(1)	mW
THD+N	Total harmonic distortion + noise	P _O = 30 mW, 20 Hz–20 kHz	0.5%	
B _{OM}	Maximum output power BW	G = 10, THD < 2%	> 20	kHz
	Phase margin	Open loop	58°	
S _{VRR}	Supply ripple rejection	f = 1 kHz	68	dB
	Channel/channel output separation	f = 1 kHz	86	dB
SNR	Signal-to-noise ratio	P _O = 100 mW	100	dB
V _n	Noise output voltage		9.5	μV(rms)

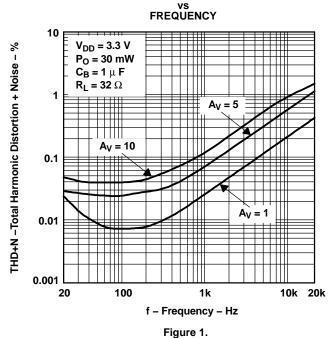
⁽¹⁾ Measured at 1 kHz

AC OPERATING CHARACTERISTICS

 V_{DD} = 5 V, T_A = 25°C, R_L = 32 Ω

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Po	Output power (each channel)	THD ≤ 0.1%	40 ⁽¹⁾	mW
THD+N	Total harmonic distortion + noise	P _O = 60 mW, 20 Hz–20 kHz	0.4%	
B _{OM}	Maximum output power BW	G = 10, THD < 2%	> 20	kHz
	Phase margin	Open loop	56°	
S _{VRR}	Supply ripple rejection	f = 1 kHz	68	dB
	Channel/channel output separation	f = 1 kHz	86	dB
SNR	Signal-to-noise ratio	P _O = 150 mW	100	dB
V _n	Noise output voltage		9.5	μV(rms)

⁽¹⁾ Measured at 1 kHz



TYPICAL CHARACTERISTICS

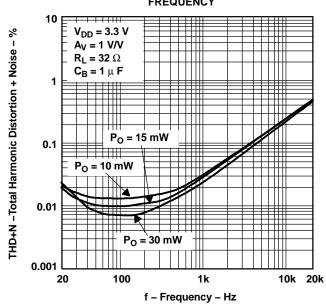
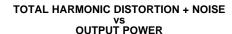
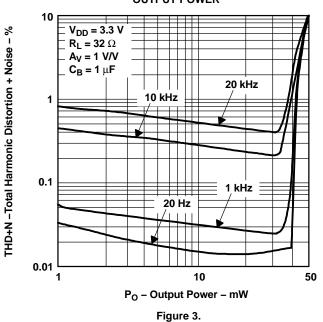
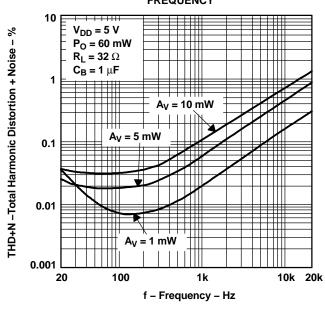

Table of Graphs

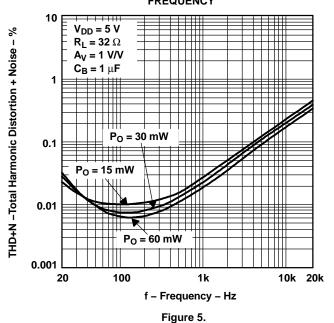
			FIGURE
THD+N	Total harmonic distortion plus noise	vs Frequency	1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 34, 36
		vs Output power	3, 6, 9, 12, 15, 18
PSSR	Power supply rejection ratio	vs Frequency	19, 20
V _n	Output noise voltage	vs Frequency	21, 22
	Crosstalk	vs Frequency	23-26, 37, 38
	Mute attenuation	vs Frequency	27, 28
	Open-loop gain	vs Frequency	29, 30
	Phase margin	vs Frequency	29, 30
	Phase	vs Frequency	39-44
	Output power	vs Load resistance	31, 32
I _{CC}	Supply current	vs Supply voltage	33
SNR	Signal-to-noise ratio	vs Voltage gain	35
	Closed-loop gain	vs Frequency	39-44
	Power dissipation/amplifier	vs Output power	45, 46


TOTAL HARMONIC DISTORTION + NOISE vs



TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY





TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

Figure 4.

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT POWER

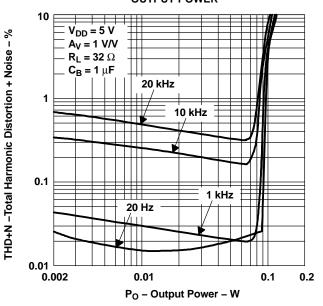
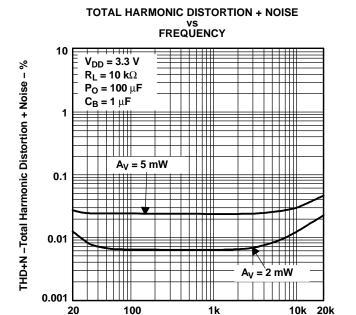
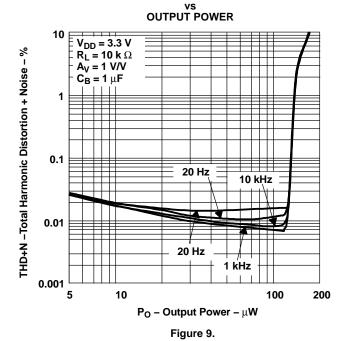



Figure 6.



TOTAL HARMONIC DISTORTION + NOISE

f - Frequency - Hz

Figure 7.

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

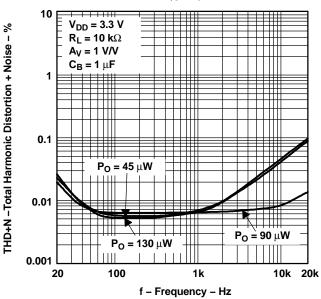


Figure 8.

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

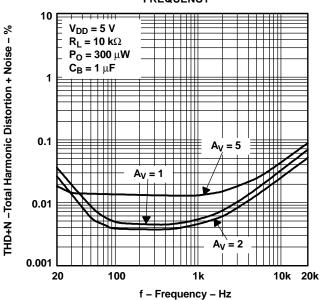


Figure 10.

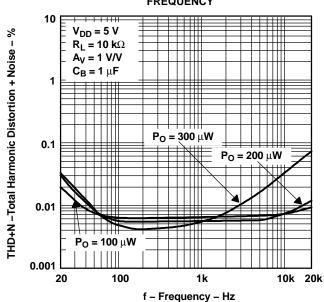


Figure 11.

TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT POWER

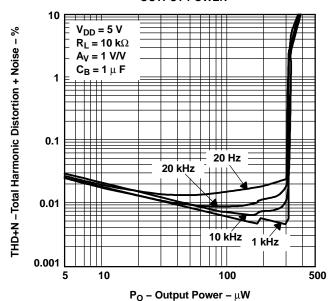


Figure 12.

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

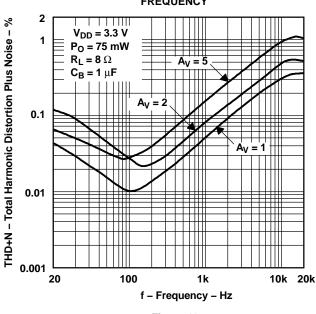


Figure 13.

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

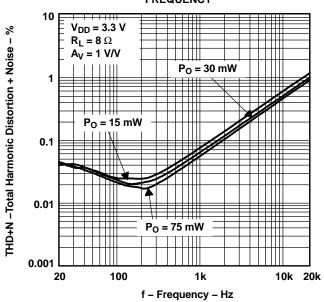
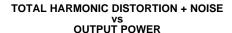
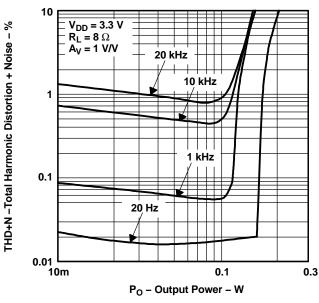




Figure 14.

Figure 15.

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

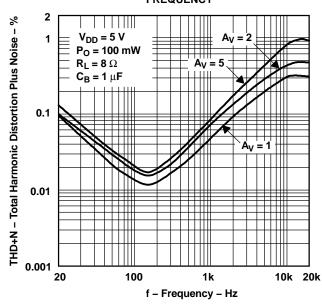
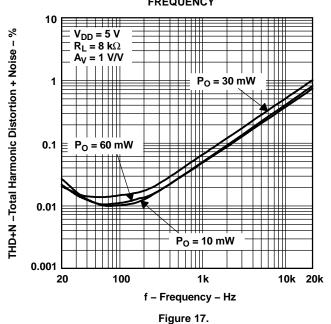



Figure 16.

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT POWER

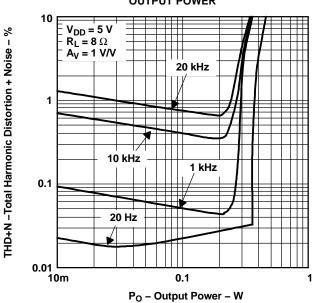
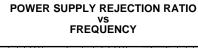



Figure 18.

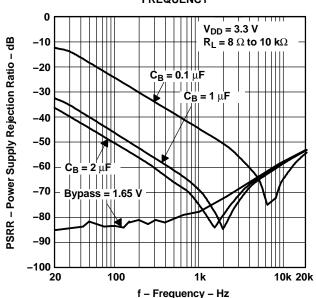


Figure 19.

POWER SUPPLY REJECTION RATIO vs FREQUENCY

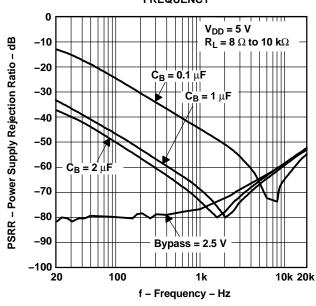
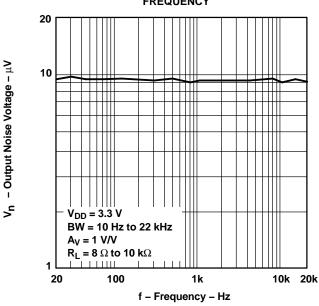
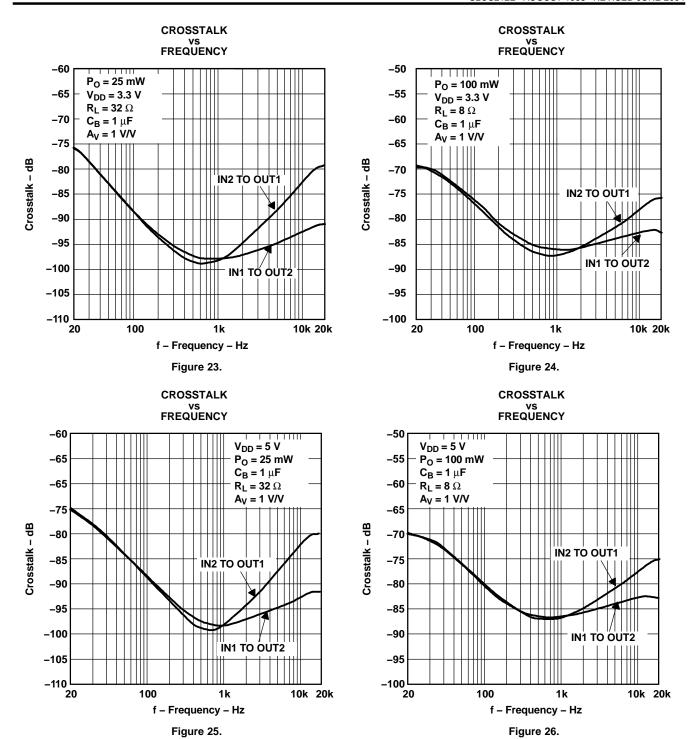


Figure 20.

OUTPUT NOISE VOLTAGE vs FREQUENCY




Figure 21.

OUTPUT NOISE VOLTAGE VS FREQUENCY

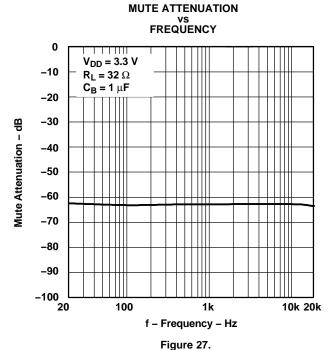
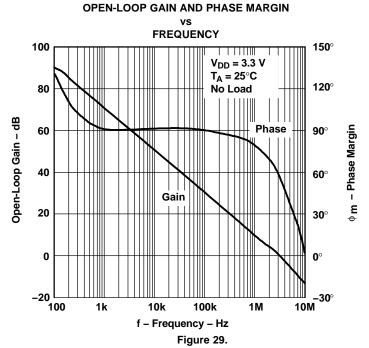


Figure 22.



vs FREQUENCY 0 V_{DD} = 5 V -10 $C_B = 1 \mu F$ $R_L = 32 \Omega$ -20 Mute Attenuation - dB -30 -40 -50 -60 -70 -80 -90 -100 └ 20 100 1k 10k 20k

f – Frequency – Hz Figure 28.

MUTE ATTENUATION

igure 27.

OPEN-LOOP GAIN AND PHASE MARGIN

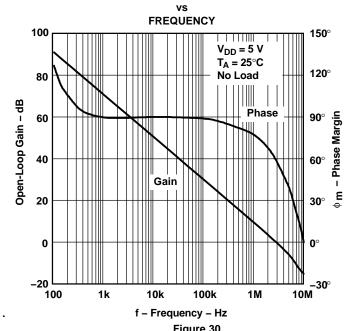
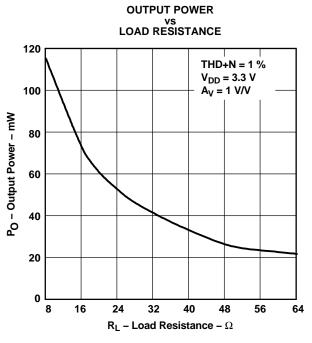
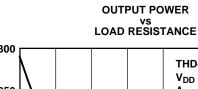




Figure 30.

Figure 31.

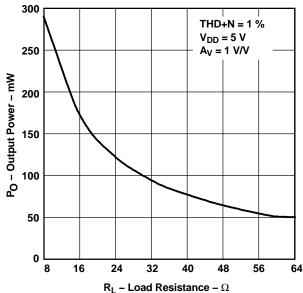
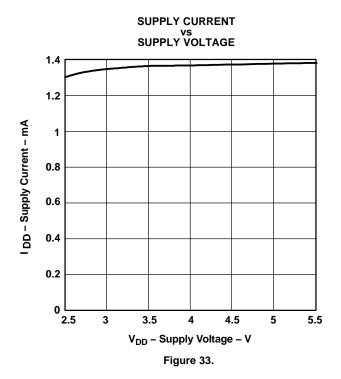
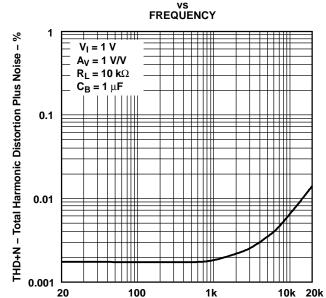
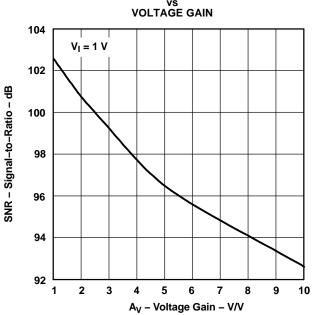




Figure 32.


TOTAL HARMONIC DISTORTION + NOISE

SIGNAL-TO-NOISE RATIO vs VOLTAGE GAIN 104

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

Figure 34.

f - Frequency - Hz

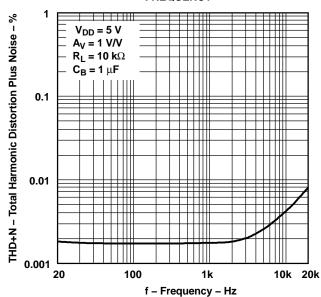
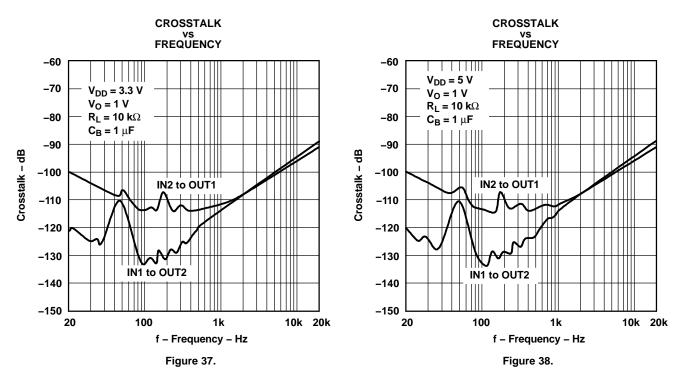
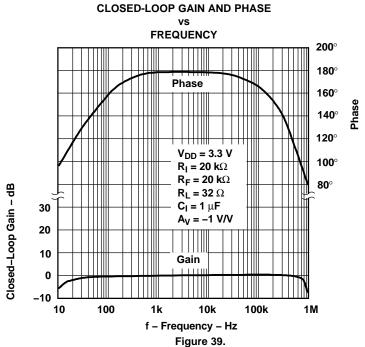
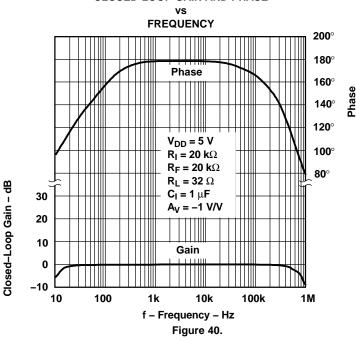
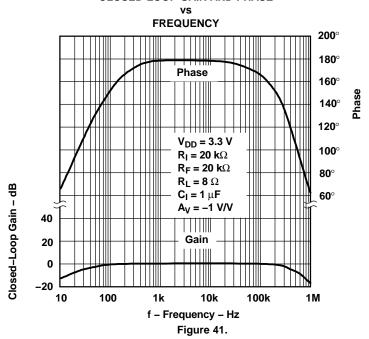
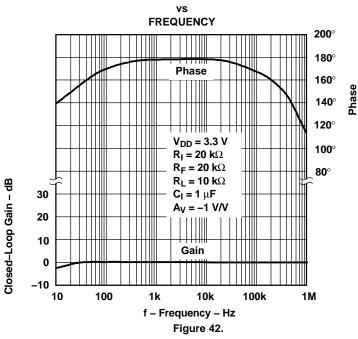




Figure 35.

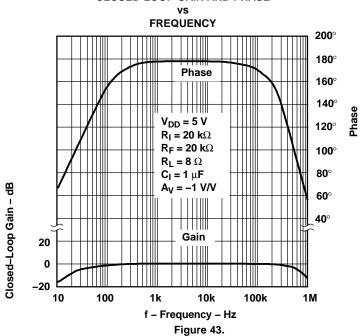




CLOSED-LOOP GAIN AND PHASE

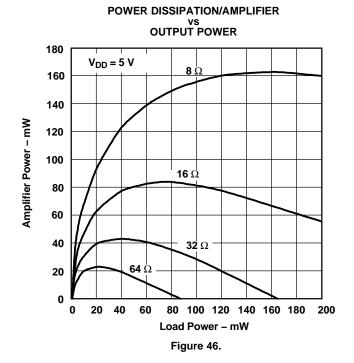


CLOSED-LOOP GAIN AND PHASE



CLOSED-LOOP GAIN AND PHASE

CLOSED-LOOP GAIN AND PHASE



CLOSED-LOOP GAIN AND PHASE vs **FREQUENCY 200**° 180° Phase 160° 140° Closed-Loop Gain - dB 120° $V_{DD} = 5 V$ $R_I = 20 \text{ k}\Omega$ 100° $R_F = 20 \text{ k}\Omega$ R_L = 10 $k\Omega$ 80° $C_I = 1 \mu F$ 30 $A_V = -1 \text{ V/V}$ 20 10 Gain 0 -10 10 100 1k 10k 100k 1M f - Frequency - Hz

Figure 44.

POWER DISSIPATION/AMPLIFIER vs OUTPUT POWER 80 $V_{DD} = 3.3 V$ 8 Ω 70 60 Amplifier Power - mW 50 40 16 Ω 30 $32^{\prime}\Omega$ 20 **64** Ω 10 0 20 40 80 100 120 140 160 180 0 60 200 Load Power - mW Figure 45.

APPLICATION INFORMATION

GAIN SETTING RESISTORS, R_F and R_I

The gain for the TPA112 is set by resistors R_F and R_I according to Equation 1.

$$Gain = -\left(\frac{R_F}{R_I}\right) \tag{1}$$

Given that the TPA112 is an MOS amplifier, the input impedance is high. Consequently, input leakage currents are not generally a concern, although noise in the circuit increases as the value of R_F increases. In addition, a certain range of R_F values is required for proper start-up operation of the amplifier. Taken together, it is recommended that the effective impedance seen by the inverting node of the amplifier be set between 5 k Ω and 20 k Ω . The effective impedance is calculated in Equation 2.

Effective Impedance =
$$\frac{R_F R_I}{R_F + R_I}$$
 (2)

As an example, consider an input resistance of 20 k Ω and a feedback resistor of 20 k Ω . The gain of the amplifier would be -1 and the effective impedance at the inverting terminal would be 10 k Ω , which is within the recommended range.

For high-performance applications, metal film resistors are recommended because they tend to have lower noise levels than carbon resistors. For values of R_F above 50 $k\Omega$, the amplifier tends to become unstable due to a pole formed from R_F and the inherent input capacitance of the MOS input structure. For this reason, a small compensation capacitor of approximately 5 pF should be placed in parallel with R_F . In effect, this creates a low-pass filter network with the cutoff frequency defined in Equation 3.

$$f_{co(lowpass)} = \frac{1}{2\pi R_F C_F}$$
 (3)

For example, if R_F is 100 k Ω and C_F is 5 pF then $f_{co(lowpass)}$ is 318 kHz, which is well outside the audio range.

INPUT CAPACITOR, C.

In the typical application, input capacitor C_I is required to allow the amplifier to bias the input signal to the proper dc level for optimum operation. In this case, C_I and R_I form a high-pass filter with the corner frequency determined in Equation 4.

$$f_{co(highpass)} = \frac{1}{2\pi R_I C_I}$$
 (4)

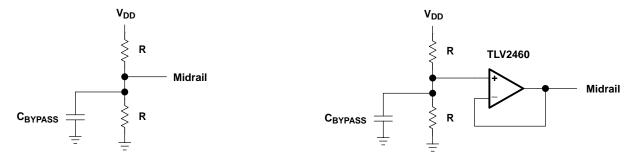
The value of C_l is important to consider, as it directly affects the bass (low-frequency) performance of the circuit. Consider the example where R_l is 20 k Ω and the specification calls for a flat bass response down to 20 Hz. Equation 4 is reconfigured as Equation 5.

$$C_{I} = \frac{1}{2\pi R_{I} f_{co(highpass)}}$$
 (5)

In this example, C_l is 0.4 μF , so one would likely choose a value in the range of 0.47 μF to 1 μF . A further consideration for this capacitor is the leakage path from the input source through the input network (R_l, C_l) and the feedback resistor (R_F) to the load. This leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially in high-gain applications (> 10). For this reason a low-leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifier input in most applications, as the dc level there is held at $V_{DD}/2$, which is likely higher that the source dc level. It is important to confirm the capacitor polarity in the application.

APPLICATION INFORMATION (continued)

POWER SUPPLY DECOUPLING, Cs


The TPA112 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure that the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also prevents oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling is achieved by using two capacitors of different types that target different types of noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor; typically, 0.1 μ F, placed as close as possible to the device V_{DD} lead, works best. For filtering lower frequency noise signals, a larger aluminum electrolytic capacitor of 10 μ F or greater placed near the power amplifier is recommended.

MIDRAIL VOLTAGE

The TPA112 is a single-supply amplifier; so, it must be properly biased to accommodate audio signals. Normally, the amplifier is biased at $V_{DD}/2$, but it can actually be biased at any voltage between V_{DD} and ground. However, biasing the amplifier at a point other than $V_{DD}/2$ reduces the amplifier's maximum output swing. In some applications where the circuitry driving the TPA112 has a different midrail voltage, it might make sense to use the same midrail voltage for the TPA112, and possibly eliminate the use of the dc-blocking capacitors.

The two concerns with the midrail voltage source are the amount of noise present and its output impedance. Any noise present on the midrail voltage source that is not present on the audio input signal will be input to the amplifier, and passed to the output (and increased by the gain of the circuit). Common-mode noise is cancelled out by the differential configuration of the circuit.

The output impedance of the circuit used to generate the midrail voltage needs to be low enough so as not to be influenced by the audio signal path. A common method of generating the midrail voltage is to form a voltage divider from the supply to ground, with a bypass capacitor from the common node to ground. This capacitor improves the PSRR of the circuit. However, this circuit has a limited range of output impedances; so, to achieve low output impedances, the voltage generated by the voltage divider is fed into a unity-gain amplifier to lower the output impedance of the circuit.

- a) Midrail Voltage Generator Using a Simple Resistor-Divider
- Buffered Midrail Voltage Generator to Provide Low Output Impedance

Figure 47. Midrail Voltage Generator

If a voltage step is applied to a speaker, it causes a noise pop. To reduce popping, the midrail voltage should rise at a subsonic rate. That is, a rate less than the rise time of a 20-Hz waveform. If the voltage rises faster than that, there is the possibility of a pop from the speaker.

Pop can also be heard in the speaker if the midrail voltage rises faster than the charge of either the input coupling capacitor or the output coupling capacitor. If midrail rises first, the charging of the input and output capacitors is heard in the speaker. To keep this noise as low as possible, the relationship shown in Equation 6 should be maintained.

APPLICATION INFORMATION (continued)

$$\frac{1}{\left(C_{B} \times R_{SOURCE}\right)} \le \frac{1}{\left(C_{I}R_{I}\right)} \ll \frac{1}{R_{L}C_{C}}$$
(6)

Where C_{BYPASS} is the value of the bypass capacitor, and R_{SOURCE} is the equivalent source impedance of the voltage divider (the parallel combination of the two resistors). For example, if the voltage divider is constructed using two 20-k Ω resistors, then R_{SOURCE} is 10 k Ω .

MIDRAIL BYPASS CAPACITOR, CB

The midrail bypass capacitor C_B serves several important functions. During start-up, C_B determines the rate at which the amplifier starts up. This helps to push the start-up pop noise into the subaudible range (so slow it can not be heard). The second function is to reduce noise produced by the power supply caused by coupling into the output drive signal. This noise is from the midrail generation circuit internal to the amplifier. The capacitor is fed from the resistor divider with equivalent resistance of R_{SOURCE} . To keep the start-up pop as low as possible, the relationship shown in Equation 7 should be maintained.

$$\frac{1}{\left(C_{B} \times R_{SOURCE}\right)} \le \frac{1}{\left(C_{I}R_{I}\right)} \tag{7}$$

As an example, consider a circuit where C_B is 1 μF , R_{SOURCE} = 160 $k\Omega$, C_I is 1 μF , and R_I is 20 $k\Omega$. Inserting these values into the Equation 8 results in:

$$6.25 \le 50 \tag{8}$$

which satisfies the rule. Recommended values for bypass capacitor C_B are 0.1 μF to 1 μF , ceramic or tantalum low-ESR, for the best THD and noise performance.

OUTPUT COUPLING CAPACITOR, Cc

In the typical single-supply, single-ended (SE) configuration, an output coupling capacitor (C_C) is required to block the dc bias at the output of the amplifier, thus preventing dc currents in the load. As with the input coupling capacitor, the output coupling capacitor and impedance of the load form a high-pass filter governed by Equation 9.

$$f_{(out high)} = \frac{1}{2\pi R_L C_C}$$
(9)

The main disadvantage, from a performance standpoint, is that the typically small load impedances drive the low-frequency corner higher. Large values of C_C are required to pass low frequencies into the load. Consider the example where a C_C of 68 μF is chosen and loads vary from 32 Ω to 47 $k\Omega$. Table 1 summarizes the frequency response characteristics of each configuration.

Table 1. Common Load Impedances vs Low Frequency
Output Characteristics in SE Mode

R _L	c _c	LOWEST FREQUENCY
32 Ω	68 μF	73 Hz
10,000 Ω	68 μF	0.23 Hz
47,000 Ω	68 μF	0.05 Hz

As Table 1 indicates, headphone response is adequate and drive into line level inputs (a home stereo for example) is good.

The output coupling capacitor required in single-supply, SE mode also places additional constraints on the selection of other components in the amplifier circuit. With the rules described earlier still valid, add the following relationship:

• Output Pulldown Resistor, R_C + R_O

 Placing a 100-Ω resistor, R_C, from the output side of the coupling capacitor to ground ensures the coupling capacitor, C_C, is charged before a plug is inserted into the jack. Without this resistor, the coupling capacitor would charge rapidly upon insertion of a plug, leading to an audible pop in the headphones.

– Placing a 20-k Ω resistor, R_O, from the output of the IC to ground ensures that the coupling capacitor fully discharges at power down. If the supply is rapidly cycled without this capacitor, a small pop may be audible in 10-k Ω loads.

Using Low-ESR Capacitors

- Low-ESR capacitors are recommended throughout this application. A real capacitor can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor minimizes the beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance, the more the real capacitor behaves like an ideal capacitor.

5-V VERSUS 3.3-V OPERATION

The TPA112 is designed for operation over a supply range of 2.5 V to 5.5 V. This data sheet provides full specifications for 5-V and 3.3-V operation because these are considered to be the two most common standard voltages. There are no special considerations for 3.3-V versus 5-V operation as far as supply bypassing, gain setting, or stability. The most important consideration is that of output power. Each amplifier in the TPA112 can produce a maximum voltage swing of $V_{DD}-1$ V. This means, for 3.3-V operation, clipping starts to occur when $V_{O(PP)}=2.3$ V, as opposed to $V_{O(PP)}=4$ V for 5-V operation. The reduced voltage swing subsequently reduces maximum output power into the load before distortion begins to become significant.

.com 7-May-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
TPA112D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPA112DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPA112DGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPA112DGNG4	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPA112DGNR	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPA112DGNRG4	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPA112DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPA112DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPA112EVM	OBSOLETE			0		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

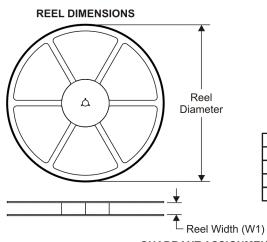
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

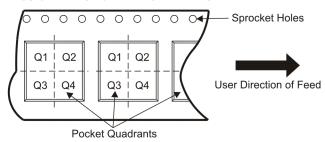
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

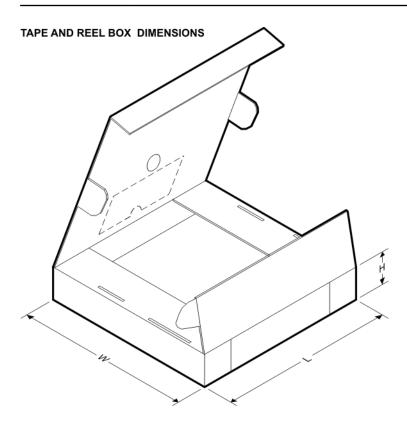
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

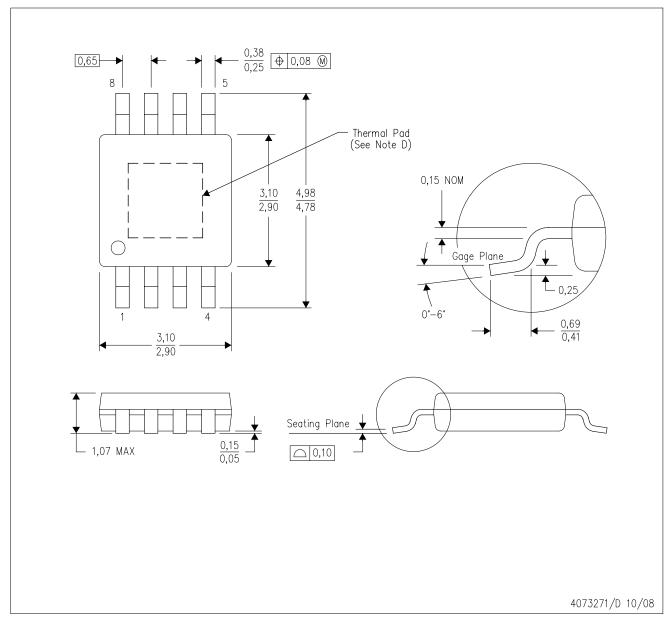
TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPA112DGNR	MSOP- Power PAD	DGN	8	2500	330.0	13.0	5.3	3.4	1.4	8.0	12.0	Q1
TPA112DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPA112DGNR	MSOP-PowerPAD	DGN	8	2500	358.0	335.0	35.0
TPA112DR	SOIC	D	8	2500	346.0	346.0	29.0

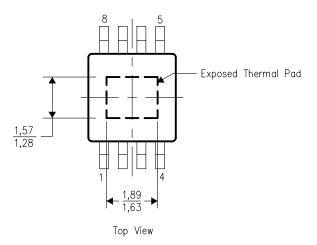
DGN (S-PDSO-G8)

PowerPAD™ PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com.
 - E. Falls within JEDEC MO-187

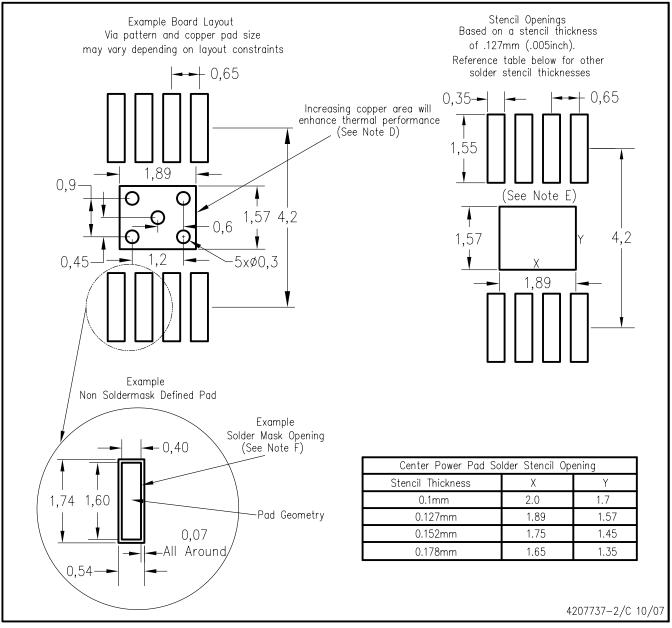
PowerPAD is a trademark of Texas Instruments.


THERMAL PAD MECHANICAL DATA DGN (S-PDS0-G8)

THERMAL INFORMATION

This PowerPAD $^{\text{M}}$ package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

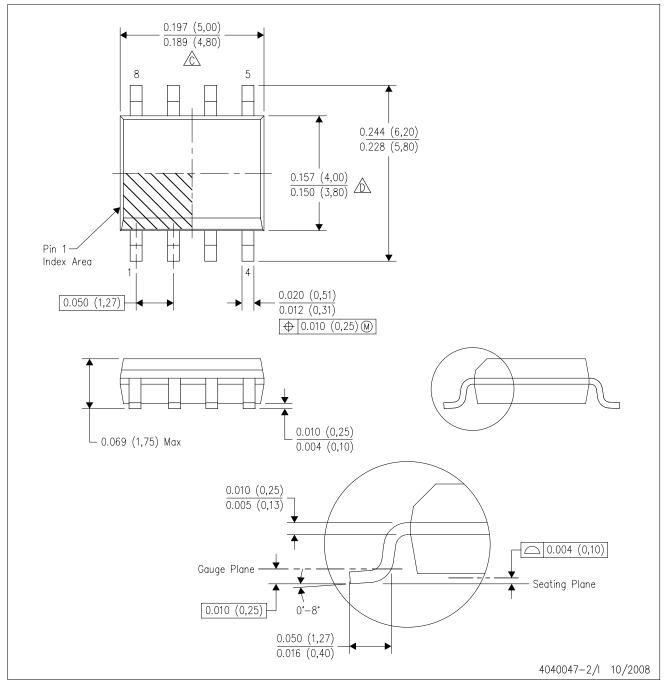
For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.


The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

DGN (R-PDSO-G8) PowerPAD™


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated